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A non-linear filtration model is considered. The initial stage in the evolution of the displacement front is studied and the initial 
conditions are found under which the front maintains a stable form for a long time. Concentration and pressure profiles in a 
direction normal to the front are obtained. It is found that the concentration varies comparatively rapidly here while the pressure 
varies extremely slowly 0 1997 Elsevier Science Ltd. All rights reserved. 

1. D E S C R I P T I O N  OF THE P R O B L E M  AND THE C H O I C E  OF M O D E L  

We consider the two-dimensional unsteady isothermal problem of two-component filtration in a homo- 
geneous and isotropic porous medium without phase transitions and we will model the displacement 
of one liquid or gas by another liquid or gas. 

Suppose that the displacing substance is characterized by a partial density Pl, a density of the pure 
substance Plo and a viscosity gl. We denote its concentration in the mixture by Cl. The corresponding 
characteristics of the substance which is being displaced are P2, P20, ~ ,  c2. In an important practical 
situation gl < g2, Pl > P2. We assume that the mixture dens!ty p = Pl + P2 and the concentration of 
the substance whk'h is being displaced c = c2 = P2(Pl + P2) - '  are the basic quantities which are to be 
found and that the mixture viscosity ~ = ~(c) which varies between the values of gl and g2 depends 
solely on the cono:ntration c. It is further assumed that ~'(c) I> 0 everywhere and that the pressure p 
depends solely on the total density p. 

The system of equations 

m~,= div(~ ~V~/, m G =  ~(V~, Vc)+ DAc 
\ B(c~ j gtc) 

(1.1) 

can be written for the above-mentioned unknown functions of the coordinates and time. The coefficients 
introduced here are: the porosity m, the permeability of the porous medium k, the derivative of the 
pressure with respect to the densitypp, and the coefficient of diffusion D, which it is natural to assume 
to be known. The function g(c) is also assumed to be known. Equation (1.1) is a consequence of the 
usual equations of continuity, diffusion and Darcy's law [1, 2]. 

We next make use of the concept of a displacement front which is a closed curve I which expands 
with time and in the neighbourhood of which the most rapid change in the concentration c occurs. This 
definition of a displacement front is justified if the dimensionless parameter, which includes the diffusion 
coefficient, is small (Section 2). A pressure well is located within I and, in its neighbourhood, p ~ Pl0, 
c ~ 0. Outside l, there is an extraction well and, here, p ~ P20, c ~ 1. 

The first complication in the non-linear (2 + 1)-dimensional problem under discussion is the fact 
that, to solve it, it is not only necessary to find the unknown functions ~ and c but also the unknown 
curve I. A second difficulty is associated with the observed instability of the displacement front which 
manifests itself in the invasion of the displacing substance into the external (oil and gas) zone in the 
form of narrow viscous fingers which are also called Saffman-Taylor fingers [3]. The principal aim of 
this paper is to investigate the evolution of the displacement front during its initial stage when the 
formation of viscous fingers only commences. 
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2. C O N V E R S I O N  TO D I M E N S I O N L E S S  Q U A N T I T I E S  
AND SMALL PARAMETERS 

We now introduce certain mean (effective) values for the density and viscosity as well as the scales 
of length L and of time T by which the space and time coordinates are divided while retaining the 
previous notation both for these quantities and for the operations die, V and A. For the dimensionless 
functions p = if/P0, c, tt(c) = ~(c) / tt0, instead of (1.1), we obtain the system of equations 

, = A Vp, Vc Pt = A div pVp ct + BAc, (2.1) 
~(c) ~.(c) 

A = ~ _  
kPoPo T D T 
mBo --~, B=--~m L 2 

The magnitude of the dimensionless and constant coeffieientsA and B can be estimated. Two versions 
are possible under real conditions 

1. A = Ao,  B = e2Bo; 2. A = ~Ao, B = E2Bo 

in whichA0 and B0 are of the order of unity and e - 10 -5. These versions are the same in the principal 
scheme. We shall subsequently consider the fast version, that is, the system of equations 

Pt = div(B-IpVp), Pl,=o = Po(X); c, = p.-l(Vp, Vc), cl,: o : Co(X ) (2.2) 

in which we putA0 = 1. Otherwise, it can be converted to the variable x = Aot. It is clear that flow in 
a weakly inhomogeneous porous medium can also be described within the framework of the system of 
equations (2 .2) .  

Such singularly perturbed systems can be investigated using two different methods, which give 
equivalent results. 

The first method involves the substitution of a formulation of the Witham type 

p = R(8-1S(x,t,8),x,t,8), c = C(8-1S(x,t,8),x,t,8) 

where S is an unknown phase and 6 is a small parameter associated with e. In the case of C and R, a 
so-called calibration problem arises which often has a self-similar solution (which depends on x - vt, 
for example). A certain equation, which also describes the propagation of the wave front l, also arises 
naturally in the case of S. 

The second method is associated with the ideas of a boundary layer. In the neighbourhood of the 
curve l, we introduce the dimensionless length of the normal I n I to I and the length of the arc s along 
L By postulating that I is closed, smooth and that it does not intersect itself, we calculate that n > 0 
outside the domain bounded by l and that n < 0 within this domain. We also introduce the fast variable 
v = 8-1n. After this, a calibration equation also arises (which is analogous to that mentioned above). 
A recurrence procedure then enables us to describe the geometrical characteristics to the front I and 
the law for its evolution with time. 

The scheme which has been described operates successfully in a number of important problems which 
are described by second-order quasilinear equations. However, a number of fundamental difficulties 
also arise here which intrinsically distinguish system (2.2) from the systems considered earlier. 

3. "A P R I O R I "  ESTIMATES AND ESTIMATION OF THE LOCAL 
V E L O C I T Y  OF MOTION OF THE D I S P L A C E M E N T  F R O N T  

We know from general theory [4, 5] that in order to prove the existence of solutions of system (2.2) 
for all t > 0, it is sufficient to obtain certain a priori estimates. These estimates, as well as certain infor- 
mation on the evolution of the solutions, can be obtained by the method of upper and lower functions 
[5]. 

It is natural to assume that the initial values p0(x) and c0(x) of the solutions of (2.2) satisfy the 
conditions 
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P2o<P0(x)<pl0 ,  0 < c 0 ( x ) < l  (3.1) 

It can be seen that the constants P20, 0 and Pro, 1 give the lower and upper solutions. Consequently, 
we have the a priori estimates 

P20 ~< p(x,t) < Pl0, 0 ~< c(x,t) ~< 1 (3,2) 

which guarantee the existence of a solution. 
For the one-dimensional version 

P, = (PP~I~ -l (c)L, ct = Ix -I (C)CxP~ + e2c,~ (3.3) 

additional inform~ttion can be obtained. We assume that, at the initial instant t > 0, the function 
Co(X ) = c(x, 0) is monotonic and C'o(X) > 0. We will prove that a similar property also holds for all 
t > 0. We differentiate the second equation of (3.3) with respect tox  and obtain an equation containing 
u = cx. For this equation u ~ 0 is the lower solution. Then [5] 

Cx(X, t) >- 0 (3.4) 

Similarly, the supposition that p~(x) < 0 implies the inequality 

Px(X,t)~ 0 (3.5) 

The estimates for Px and c~ which have been obtained enable us to estimate the function p(x, t) 
from below. It turns out that this function majorizes the function Z1/2(x, t) which satisfies the equation 
Zt = luzl/2z=. 

The solutions of this equation behave in roughly the same way as solutions of  the standard heat- 
conduction equation. In particular, their spreading with respect tox as t increases follows from the equality 

- 2 d 
Iz; =-Tt 

- o o  - o o  

It is then possible to estimate I Px I over a certain range 

0 ~< t ~< T~ (3.6) 

of  the initial evolution of the displacement front when I cx I "~ Cl E-1 , [ cxt I "~ C21~-2- AS the lower function 
for Px, we take the function -a(t)~t(x, t). It can be shown that the function a(t)  can be expressed in 
the form 

a(t )  = suplP0x I ~t(x, t) exp(c2t) (3.7) 
x 

Here  c2 is a const~Lnt which arises when estimating I c~ I in the range (3.6) 

supl cxx ( X, t )l < c2 ~. -2 
x 

Finally, using (3.5), it is possible to construct upper and lower limits for the function c(x, t) 

?(x  - At, t) <<- c(x ,  t) <~ ~(x  + At,  t), 

where ~" is the solution of the heat-conduction equation 

A = sup a(t )  (3.8) 
O<t<~ 

~'t = £2~'xx, clt=0 = Co(X) (3.9) 

Inequalities (3.8) enable one to estimate the velocity of the front motion during the initial stage of the 
process. Actually, the front curvature can increase in the range (3.6) but its rate of displacement does not 
exceed the constant A, which limits the magnitude of ~t-l(c0)l Vp01 from below. 
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The estimate which has been obtained leads to the following practical recommendation. The instability 
of a displacement front is smaller, the smaller the derivative of the expression p0,,Ix-l(c0) along l, that 
is, the derivative with respect to the variable s. 

The physical mechanism by which instability of the front shape occurs can be described using the 
above estimates and calculations. The subsequent arguments are not completely rigorous since they 
are partially based on the estimates obtained above, which have only been proved in the one-dimensional 
case. However, these estimates are quite convincing in the case of a quasiplane front, that is, a front 
with a small initial curvature. 

So, we shall assume that, at the initial instant, the vector 

V(x, t) = Ix-IVp 

varies extremely smoothly such that I W I < 8, I V2V I < 8 ~ 1. So long as the magnitude of  E21 Ac I is 
small, this vector, as previously, varies weakly with respect to x and barely changes as t increases from 
its initial value, which is proved in a similar manner to the derivation of  the lower function for Px. 
Equation (2.6) is therefore well-approximated by the equation 

c~ = V(Sx, 8 t ) V c  

or, when account is taken of the assumption of a quasiplane front, by the equation ct = V(fir, &)cn. 
With the initial condition c It=0 = c0(x), the corresponding solution has the form c(x, t) = c0(x + Vt). 
This means that each segment of  the front propagates with its own local velocity V, which is defined 
by the initial value of Ix-IVp. Hence, here we have the conventional pattern of kinematic instability when 
different segments of  a front move at a different velocity. 

As I W I and I Vc I increase, the pattern becomes more complex. It is necessary to use other methods 
to describe the behaviour of the solutions at times when I Vc I - e-1. This is done in Section 5 with the 
additional assumption that the front curvature is small. 

4. T H E  S T A N D A R D  P R O B L E M  

We will attempt to find a solution p = R(z), c = C(z), z = x - v t  of the one-dimensional equations 
(3.3) which is self-similar in the highest order. Here Ix(c) = M ( z ) .  For brevity, let Pi -~ Pi0. 

The functions R and C must satisfy the boundary conditions 

R(z+)=p2, R(z_)=pl ,  C(z+)=l ,  C(z_)=0 ,  (4.1) 

where for a problem in an Infinite interval z± = ___oo. 
After substitution and integration, we have 

- v R  + K v  = R R ' M  -1 , K = const (4.2) 

- C ' ( u  + R ' M  - t )  = e2C "' (4.3) 

After using the boundary condition, Eq. (4.2) yields 

4 
V ~ M ( z ) d z  = S ( K )  ffi Pl - P2 + K In Pl - K 

z.. P2 - K  
(4.4) 

It is clear that there is no solution of the problem being considered over an infinite range of variation 
of z since the modulus of the right-hand side of (4.4) is no less than (z+ - z_)l v IIXI. However, using 
(4.4), it is possible to prove the existence of solutions of the two-point boundary-value problem (4.1)-(4.3) 
over a large, but finite, interval when z± = ...8 -1, where 8 is a small parameter. 

Suppose that the function R is expressed in the form 

z 

R =  R I ( - v U ( z ) , K ) ,  P2 ~ R ~  Pl; U ( Z ) =  S M ( C ( z ' ) ) d z "  (4.5) 
7--. 

An expression for R1 can be found from the equation v U  = Pl  - R1 + K In (Pl - K) - K In (R1 - K). It 
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is a completely continuous functional of C(z), if C(z) is a continuous function. Suppose that 

- 8 - 1  

z R(z ) _s-~ 

The constant v is defined by the relation v = 2~(K)  (ix) -1 which follows from (4.4). Substitution of 
(4.5) into (4.3) leads to the equality 

C(z) = ( C  2 - -  C 1 )[exp ~(Z, 5, E, K) - E_ ](E+ - E )-l + cl __ T[C(.)](Z) (4.6) 

':2.1 -- C("t'8-l), El: -= e x p ' (  "1"8-1, 8, e, K) 

Here, the phase • is a non-linear, completely continuous functional in the set of functions C(z) which 
are continuous in t',--5 -1, 5 -1) such that cl <~ C(z) <~ c2. According to (4.6), T is such a functional and 
maps the above-mentioned set of functions into themselves. Consequently, by Sehauder's principle, a 
solution of Eq. (4.6) exists. Then, for each K, such that S(K) > 0, a solution of the boundary-value 
problem (4.1)-(4.3) exists with a certain positive value of the velocity v. 

The solution obtained can be used in the following manner for small 8 ,~ e 2. In this ease, we have 

C-"(-8 -I ) = O(e  -c~2 ), C'(8 -I ) = O(81~ -2 ), R'(+8 -1 ) = 0(5) 

Consequently, if we continue the solution beyond the limits of the range (--8 -1, 8 -1) by putting 

C : q ,  R=pl  (z<-8-1) ,  C = c  2, R : p  2 ( z>8  -l) 

we obtain the generalized solution of class W 2'1 which satisfies the system of equations with a small 
residual (the residual is a functional L~,s in the class of Schwartz functions with a norm not exceeding 
~-2). A similar idea has been used in [6]. 

We shall now consider the behaviour of the solution C(z), R(z) in detail. Formula (4.6) shows that 
the concentration c changes sharply in the neighbourhood of the front. The steepness of the graph of 
this function increases as e decreases. This is due to the fact that Eq. (4.3) contains a small parameter. 
At the same time, the density p and the pressurep change comparatively slowly in the neighbourhood 
of the displacement front while the pressure gradient is also appreciable at a large distance from the 
displacement front. 

5. C R I T E R I A  F O R  T H E  S T A B I L I T Y  O F  A F R O N T  
W I T H  A S M A L L  C U R V A T U R E  

The problem of the evolution of a front with a small curvature, when I Vp I and I Vc I are small and 
I (Vp, Vc) I is much greater than e2Ac, has been considered in Section 3. It might be expected that, as 

2 a result of evolution with time, solutions are formed for which the term e Ac can now no longer be 
neglected. The problem as to how the normal velocity and the curvature of such fronts change with 
time in this case is, of interest. This problem has been solved for the simplest equations and systems 
(see [7-10]). 

In a homogeneous medium (when the coefficients of the equations are independent ofx and t), for 
the front velocity v in the direction normal to the front, we have 

u = - t ~ + u  0 (5.1) 

where × is the front curvature (the mean curvature in the multidimensional case) and v0 is a constant 
which is determined from the solution of the standard problem. A certain procedure can be proposed 
for calculating the constant ct. 

In the case of tile equations from [8, 9], a > 0 always. As has been shown by Kuramoto [10], it is 
possible that tx < 0 for certain other systems. For such systems, there is diffusional instability of the 
front, and a front which initially has a small curvature can turn out to be strongly bent after a short 
time. 

The principal physical effect, that is, whether the front is stable or not, is completely determined by 
the sign of t~. 
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In the problem under consideration, which is significantly more complex than those which have been 
studied earlier, it is difficult to create a regular procedure for determining the corrections. We shall 
use another method which enables us to determine the sign of tx. It can be checked that this method 
also gives the correct answer in the cases which have been studied previously. 

Suppose that the front is a smooth plane curve 1, without any self-intersections and with a very small 
curvature x, I × I "~ 8 ,~ e 2, where 5 is the small parameter used in Section 4. On introducing the standard 
coordinates (n, s), where n is the length of the normal to the front and s is the length of an arc along 
it, we obtain the system of equations 

(5.2) 

- V  C n = PnCn~-I(C)+E2Cnn (5.3) 

We assume that the term with g in (5.2) is of the nature of a correction term in accordance with the 
condition I ~ I "~ ~i and since v - & The functions p and c can therefore be determined using the formulae 
in Section 4. 

We integrate Eq. (5.2) with respect to n in the limits from __~-1 to 5 -1 and, after this, we find that 

J~ pp. I )~ 
e t=2  S PPn d n - n  (5.4) 

Here it follows that one should make the substitution p = R(n). In the problems from [8, 9] which have 
been studied, the term outside the integral always vanished and the sign of o~ was easily determined 
from a consideration of the monotonicity of p with respect to n. A certain accuracy is now required 
since the two terms in (5.4) are of the same order. 

We use (4.2), from which, after some reduction, we have 

6- I 
v (plo+P2o (R) (R)=2~5 IRdn (5.5) 

a = 2 ' - 6 - '  

Hence, the sign of o~ depends on what is the greater, the mean of R over all n or the means of the 
boundary values Pl0 and P20. Stable propagation occurs in the first case while the front disintegrates in 
the second case. 

To analyse the magnitude of tx, numerical methods were employed directly for the initial partial 
differential equations in the spatially one-dimensional case when 0 ~< x ~< L, p(0) = Pl > P2 = p(L), 
c(O) = O, c(L) = 1. If the function p(x) were to be linear, we would obtain that a = 0. However, the 
calculations show that the function p(x) is convex upwards although only very, very weakly. The 
magnitude of tx is therefore very small in absolute magnitude but it is negative, that is, the front is weakly 
stable When account is taken of the fact that the process is not one-dimensional, instability of the 
displacement front can occur during the very first stage of the process. 
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